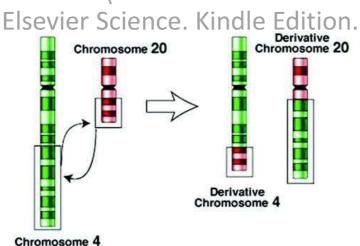


Zpráva o řešení projektu reg. č.: CZ.02.2.69/0.0/0.0/16_015/0002362 za období 052020 - 072020

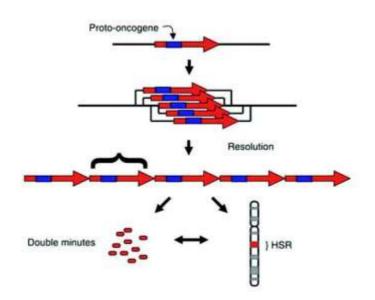

Autor: kolektiv autorů pod vedením prof. MUDr. Petra Zacha, CSc. z Ústavu Anatomie 3. LF UK

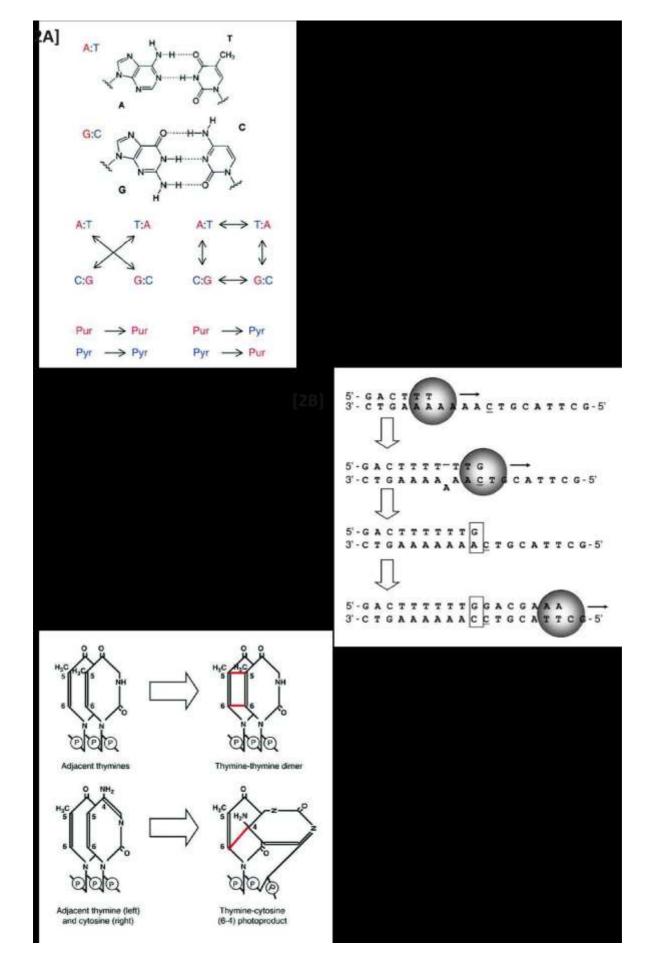
Příloha 1

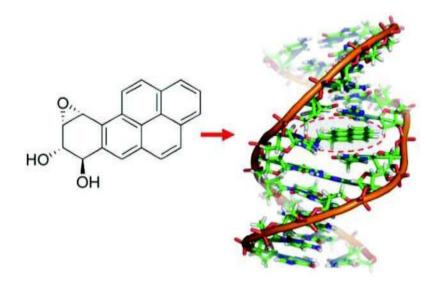
Pracovní sešit kurz 4

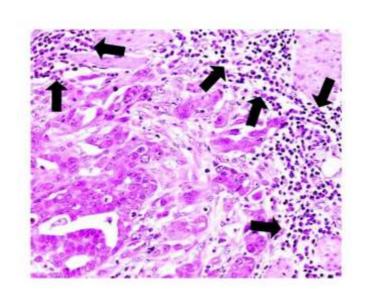
Obrázky a tabulky v tomto pracovním sešitu pochází z:

Norman, Anthony W.; Henry, Helen L.. Hormones (Kindle Location 12035). Elsevier Science, Kindle Edition

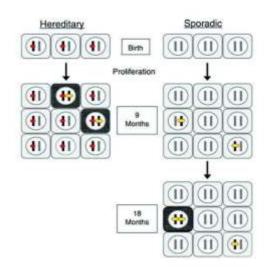


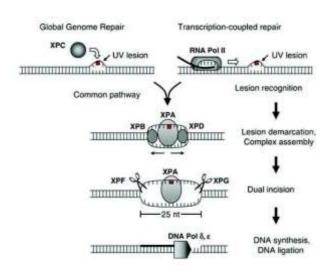

5'-aat agt aaa aag acg ttg Cga gaa gtt gga agt gtg-3'
N S K K T L R E V G S V

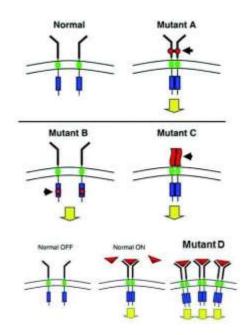

5'-aat agt aaa aag acg ttg Tga gaa gtt gga agt gtg-3'
N S K K T L STOP

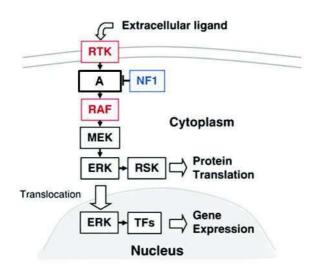

5'-gaa ata aaa gaa AAg att gga act agg tca-3'
E I K E K I G T R S

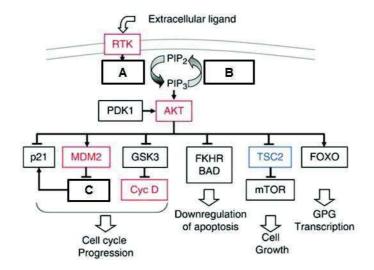
5'-gaa ata aaa gaa gat tgg aac tag gtc a-3' E I K E D W N STOP

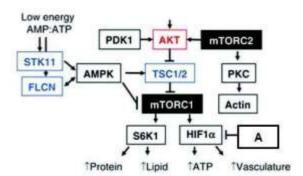


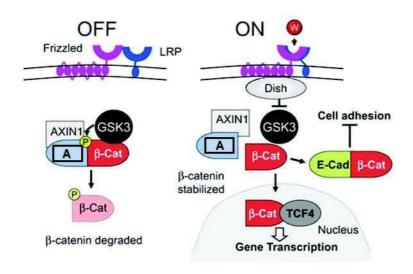


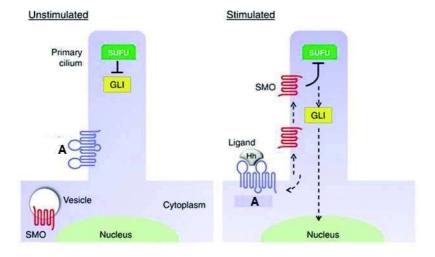


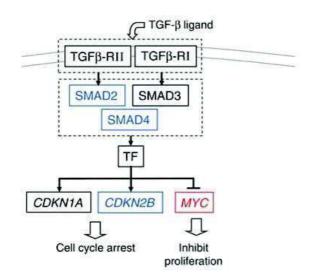


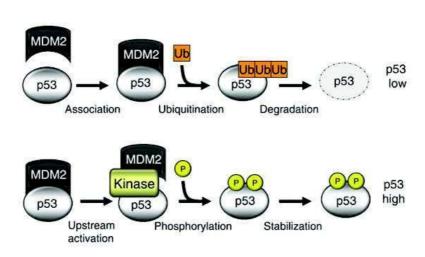


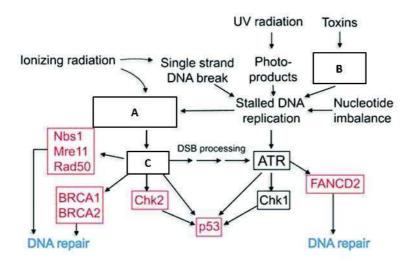

Zděděný zmutovaný gen	Syndrom	Typ rakoviny
RB1		
APC		
TP53		
BRCA		
	Familial Multiple Mole and Melanoma (FAMMM)	
	Cowdenův syndrom	

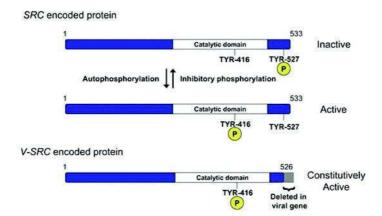

Zděděný zmutovaný gen	Syndrom	Typ rakoviny
	Juvenilní polypózní syndrom	
NF1		
	Gorlinův syndrom	
VHL		
	Turcotův syndrom	
	Mnohočetná endokrinní neoplazie	
	Lynchûv syndrom	

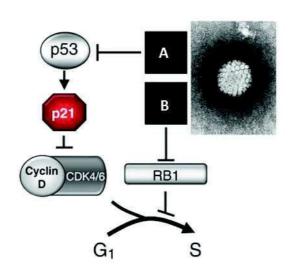


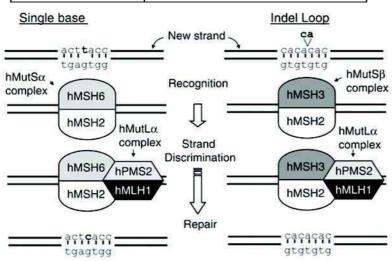




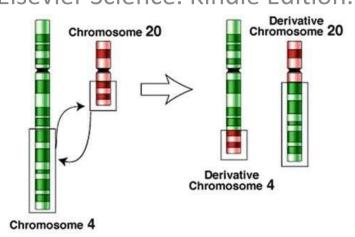


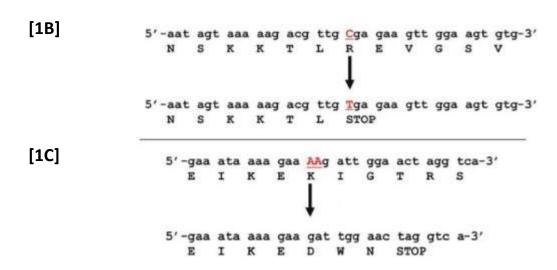


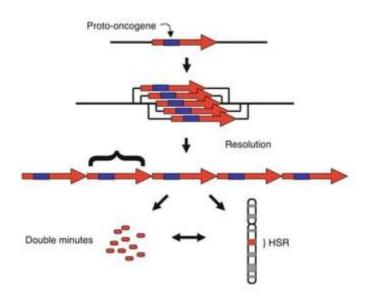




Infekční agens	Тур	Zánětlivá choroba	Rakovina
Hepatitis B virus Hepatitis C virus	DNA virus	hepatitis	
	bakterie	gastritis	rakovina žaludku
Epstein-Barr virus	DNA virus	mononukleóza	
	DNA virus	cervicitis	rakovina děložního čípku
Schistosoma haematobium	motolice	cystitis	
Opisthorchis viverrini	motolice	cholangitis	


gen	protein
sis	
	FGF-4
erbB	
	HGFR
trkA	


Workbook course 4


The pictures and tables in this workbook are from:

Norman, Anthony W.; Henry, Helen L.. Hormones (Kindle Location 12035). Elsevier Science. Kindle Edition.

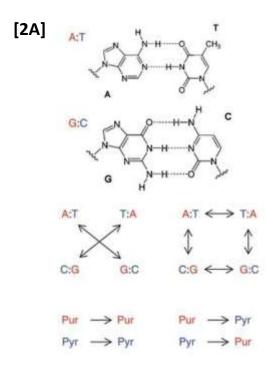
[1A]

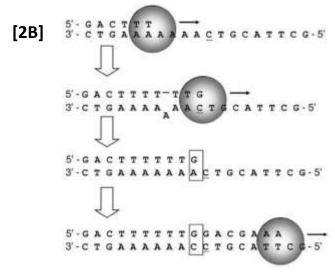
[1D] [1A]

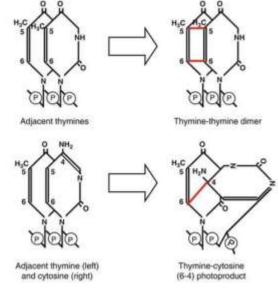
- 1. Write the name of the type of mutation in the picture.
- 2. What kind of damage has to happen to DNA to make this mutation possible?
- 3. Which environmental factor can cause this kind of DNA damage?
- 4. This type of mutation leads preferably to one kind of cancer. Which one?
- 5. How can this mutation influence the expression of proteins?

[1B]

1. What is the name of the mutation in picture B?


- 2. How will the final protein look?
- 3. How can this mutation influence the function of the final protein?


[1C]

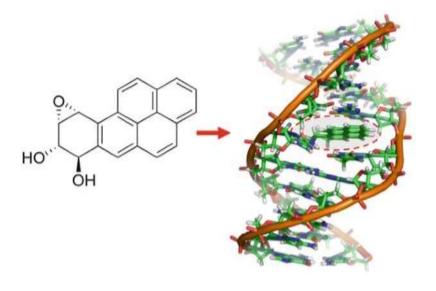

- 1. What is the name of the mutation in picture C?
- 2. When you consider reading the genetic information, what has happened?
- 3. How will the final protein look?
- 4. How can this mutation influence the function of the final protein?

[1D]

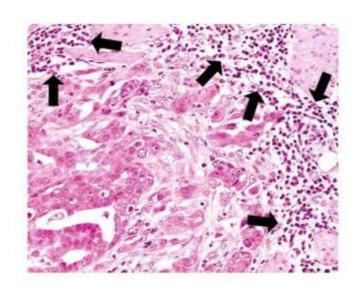
- 1. Write the name of the type of mutation in the picture.
- 2. Does this mutation matter in oncogenes or tumor suppressor genes?
- 3. How can such mutation happen?
- 4. Write down some genes that are often mutated in this way in various types of cancer.

[2C]

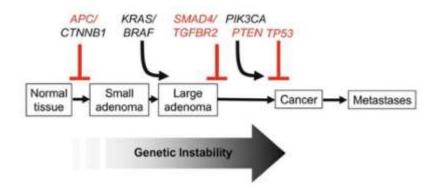
[2A]


- 1. What is transition?
- 2. What is transversion?
- 3. Which one of these types of mutations can happen due to enzyme activity?
- 4. Which types of substitutions are most common?

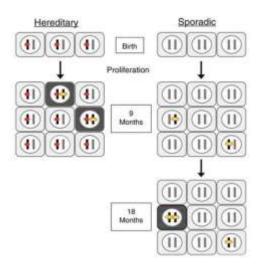
[2B]

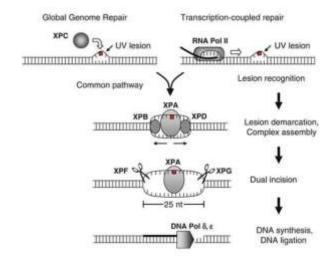

- 1. Describe what is happening in the picture.
- 2. What type of mutation has happened there?

[2C]


- 1. Which environmental factor has caused this type of DNA damage?
- 2. This type of DNA damage causes a specific type of cancer. Which one?
- 3. Name the mechanism that can repair this type of DNA damage.
- 4. So-called ionizing irradiation causes a different kind of DNA damage. Which one? Which mechanisms can the cell use to repair that damage?
- 5. Which of the mentioned repair mechanisms is less prone to make a mistake?

[3A]


[3B]


[**3C**] [3A]

1. Na obrázku je aktivní metabolit kterého karcinogenu?

۷.	ktere skupine latek ten karcinogen patri?
3.	Jak může tato látka vniknout do našeho organismu?
4.	Jakým způsobem interaguje s DNA?
5.	Jak se nazývá výsledek této interakce?
6.	K čemu následně doje při replikaci DNA?
7.	Jaký druh rakoviny tato látka způsobuje?
[3B]	
1.	Jakým způsobem může chronický zánět přispět ke vzniku nádorového bujení?
2.	Jakým způsobem může chronický zánět přispět k propagaci nádorového bujení?
[3C]	
[JC]	
1.	Vznik které rakoviny tento obrázek znázorňuje?
2.	Kterou barvou jsou vyznačeny onkogeny a kterou tumor supresorové geny?
3.	Popište funkci jednotlivých onkogenů uvedených na obrázku.
4.	Popište funkci jednotlivých tumor supresorových genů uvedených na obrázku.
5.	Dělí se rakovinné buňky rychleji než normální buňky?

[4A]

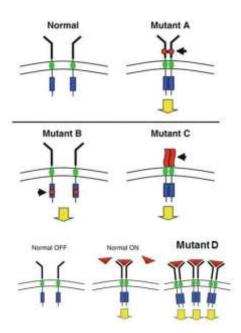
[4B]

[4C]

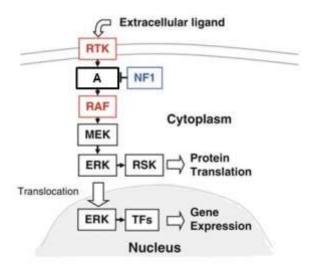
Zděděný zmutovaný gen	Syndrom	Typ rakoviny
RB1		
APC		
TP53		
BRCA		
	Familial Multiple Mole and Melanoma (FAMMM)	
	Cowdenův syndrom	

Zděděný zmutovaný gen	Syndrom	Typ rakoviny
	Juvenilní polypózní syndrom	
NF1		
	Gorlinův syndrom	
VHL		
	Turcotův syndrom	
	Mnohočetná endokrinní neoplazie	
53	Lynchův syndrom	

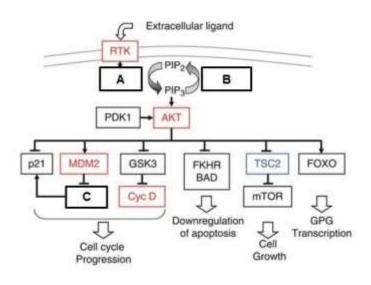
[4A]


- 1. The picture shows the tumorigenesis of a specific tumor. Which tumor?
- 2. Which protein gets mutated in the picture?
- 3. What is the function of the mutated protein in the cell cycle?
- 4. What happens when the protein loses its function due to mutation?

[4B]


- 1. What is the name of the process in the picture?
- 2. What kind of mutations does this process repair?
- 3. What is xenoderma pigmentosum? Describe its symptoms.

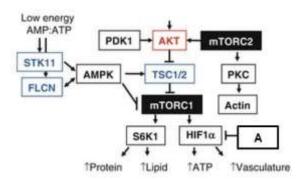
[4C]


1. Fill in the table.

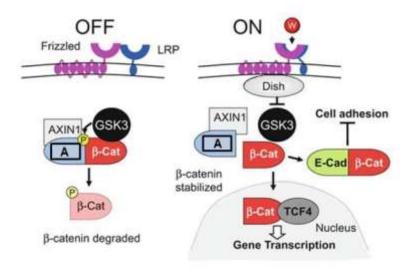
[5A]

[5B]

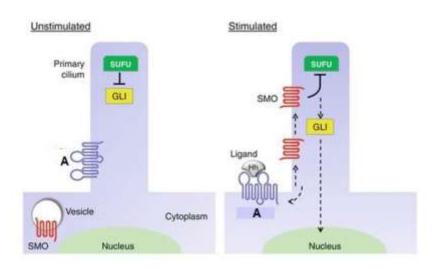
[5C]


[5A]

- 1. Which type of membrane receptors is in the picture?
- 2. Which types of mutations do you see in the pictures A, B, C a D?


[5B]

- 1. What is the name of the molecule "A"?
- 2. Is "A" an oncogene or a tumor suppressor gene?
- 3. What do you know about NF1?

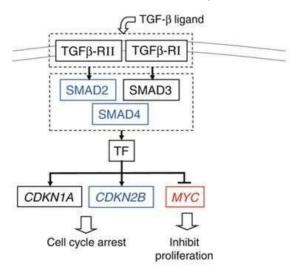

- 1. What is the name of the molecule "A"?
- 2. Is the "A" an oncogene or a tumor suppressor gene?
- 3. What is the name of the molecule "B"?
- 4. Is the "B" an oncogene or a tumor suppressor gene?
- 5. Hereditary mutation of the "B" molecule causes a cancer syndrome. Which one?
- 6. What is the name of the molecule "C"?
- 7. Is the "C" an oncogene or a tumor suppressor gene?
- 8. Hereditary mutation of the "C" molecule causes a cancer syndrome. Which one?

[6A]

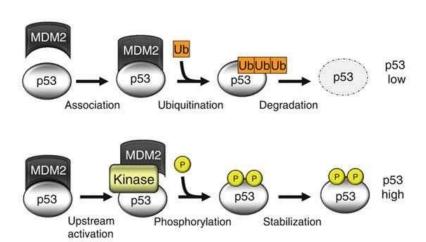
[6B]

[6C]

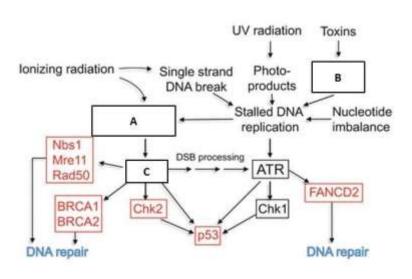
[6A]


- 1. What is the main function of the mTOR signaling?
- 2. What is the name of the "A"?
- 3. What is the function of the "A"?
- 4. Is the "A" an oncogene or a tumor suppressor gene?
- 5. The hereditary mutation of the "A" causes a cancer syndrome. Which one?
- 6. The hereditary mutation of one of the molecules in the picture (not the "A") causes Birt–Hogg–Dubé syndrome? Which one?

[6B]


- 1. What is the name of the ligand, which activates Frizzled and LRP?
- 2. What is the name of the "A"?
- 3. Is the "A" an oncogene or a tumor suppressor gene?
- 4. The hereditary mutation of the "A" causes a cancer syndrome. Which one?
- 5. What is the main function of the β -catenin?
- 6. Is the β-catenin an oncogene or a tumor suppressor gene?

[6C]

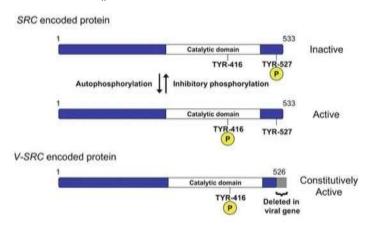

- 1. Jak se jmenuje molekula je "A"?
- 2. What is the name of the "A"?
- 3. What is the function of the "A"?
- 4. Is the "A" an oncogene or a tumor suppressor gene?
- 5. In which type of cells this signaling should not occur?
- 6. The hereditary mutation of the "A" causes a cancer syndrome. Which one?

[7A]

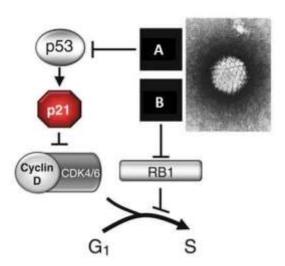
[7B]

[**7C]** [7A]

- 1. Which color represents the oncogenes and which the tumor suppressor genes?
- 2. The gene CDKN2B encodes two proteins. Which ones? What is their function?
- 3. What is the function of the myc protein?
- 4. What is the main purpose of the receptor serine-threonine kinases signaling?


[7B]

- 1. What do you know about the p53 protein?
- 2. What do you know about the MDM2 protein?


- 3. Which one of them is the oncogene, and which one is the tumor suppressor gene?
- 4. Do you know another transcription factor, which, if not activated, is constitutively degraded by the ubiquitination?

[7C]

- 1. How can ionizing radiation affect DNA? Fill in "A".
- 2. What can occur when various toxins affect DNA? Fill in "B".
- 3. What is the name of the molecule "C" and what is its function?

[8A]

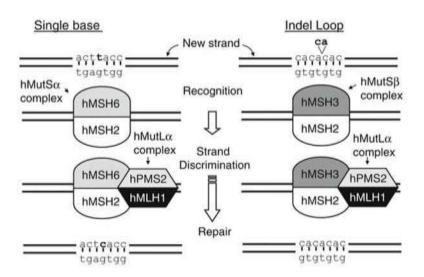
[8B]

[8C]

Infekční agens	Тур	Zánětlivá choroba	Rakovina
Hepatitis B virus Hepatitis C virus	DNA virus	hepatitis	
	bakterie	gastritis	rakovina žaludku
Epstein-Barr virus	DNA virus	mononukleóza	
	DNA virus	cervicitis	rakovina děložního čípku
Schistosoma haematobium	motolice	cystitis	
Opisthorchis viverrini	motolice	cholangitis	

[8A]

- 1. What is the function of the src protein?
- 2. Describe the functional difference between the protein encoded by the gene C-SRC and the protein encoded by the gene V-SRC.
- 3. Which group of viruses can transmit v-src?


[8B]

- 1. What is the name of "A"?
- 2. What is the name of "B"?
- 3. Name the virus that contains genes for these two proteins.
- 4. Into which group of viruses does that virus belong?

1. Fill in the table.

[9A]

gen	protein	[9B]
sis		
	FGF-4	
erbB		
	HGFR	
trkA		

[9A]

1. Fill in the table.

[9B]

- 1. What kind of DNA repair is in the picture?
- 2. Name at least two syndromes caused by germline mutations of genes that encode protein participating in this type of DNA repair.